
110 Theoretical Division Nuclear Weapons Program Highlights 2004–2005

Computational Sciences

A Memory
Efficient Parallel
Tridiagonal Solver
Travis M. Austin, Markus Berndt, and
J. David Moulton (T-7)

Large tridiagonal systems of linear
equations appear in many numerical
analysis applications. In our work,
they arise in line relaxations needed

by robust multigrid methods, such as the
parallel BoxMG code [1], for structured grid
problems. We present a new memory-efficient
partitioning algorithm for the solution of
diagonally dominant tridiagonal linear
systems of equations that scales well
on distributed-memory parallel computers.
Its multilevel recursive design makes it
well suited for distributed-memory parallel
computers with very large numbers
of processors.

On a serial computer, Gaussian elimination
without pivoting can be used to solve a
diagonally dominant tridiagonal system of
linear equations in O(N) steps. This serial
algorithm is commonly referred to as the
Thomas algorithm [2]. Unfortunately, this
algorithm is not well suited for parallel
computers. The first parallel algorithm for
the solution of tridiagonal systems was
developed by Hockney and Golub. It is now
usually referred to as cyclic reduction. Stone
introduced his recursive doubling algorithm
in 1973. Both cyclic reduction and recursive
doubling are designed for fine-grained
parallelism, where each processor owns
exactly one row of the tridiagonal matrix.
In 1981, Wang proposed a partitioning
algorithm aimed at more coarse-grained
parallel computation typical for shared
memory clusters, where NP << N. There has
also been attention directed toward a parallel
partitioning of the standard LU algorithm.
In 1986, Sun et al. introduced the parallel
partitioning LU algorithm that is very similar
to Bondeli’s divide and conquer algorithm.
These algorithms, while well suited for
problems distributed across a moderately
large number of processors, do not scale well
to very large numbers of processors.

Our algorithm can be described as a
recursion with a partitioning algorithm
as its basis. We begin by describing this
partitioning algorithm. The tridiagonal linear
system is assumed to be distributed across a
large number of processors, such that each
processor owns a contiguous number of
rows. Each processor transforms its piece of
the tridiagonal matrix into a matrix with a
sparsity pattern such as

 Alocal = .

Gathering the first and last rows (red) from
every processor yields an interface system
that is again tridiagonal and diagonally
dominant. This interface system can be
solved by gathering all equations to one
processor, using the Thomas algorithm there,
and then scattering the solution back to all
NP processors. Then the interface unknowns
can be eliminated from the local systems,
yielding NP local tridiagonal systems (blue
×’s). These local systems can be solved
efficiently by the Thomas algorithm and do
not require any further communication.

Although this nonrecursive single-level
approach scales reasonably well for moderate
numbers of processors, it does not scale well
for very large number of processors: gather
and scatter operations typically scale linearly
with the number of processors. Our remedy is
to gather only pieces of the complete interface
system to a subset of all processors, such
that each of these subset-processors owns
a contiguous piece of the interface system.
Then we apply the partitioning outlined
above to each piece of the interface system.
This yields a lower-level interface system on
the subset of processors. We proceed with
further recursion if the subset of processors
is sufficiently large or solve the new interface
system directly on one of the processors in
the subset.

We describe our algorithm as memory-
efficient because the partitioning step is
organized such that the interface system is
generated without overwriting the original
tridiagonal system.

A U.S. Department of Energy Laboratory LA-UR-05-3853 June 2005 111

Computational Sciences

For example, the figure shows timings for
20 V(1,1) cycles with red-black line relaxation
on a square processor grid with constant
problem size on each processor. We observe
very moderate growth in the solution time,
which indicates good parallel scaling of our
parallel-line relaxation algorithm.

The line solves are performed across up
to 22 processors, without recursion in our
algorithm. A careful study of the complexity
of this nonrecursive algorithm indicates
a linear dependency on the number of
processors. Our recursive multilevel
tridiagonal solver would exhibit only
logarithmic dependence on the number
of processors. We will investigate the
performance of this recursive algorithm in a
future paper.

[1] T.M. Austin, M. Berndt, B.K. Bergen,
J.E. Dendy, and J.D. Moulton, “Parallel,
Scalable, and Robust Multigrid on Structured
Grids,” Los Alamos National Laboratory
report LA-UR-03-9167 (2003).
[2] T.M. Austin, M. Berndt, and J.D. Moulton,
“A Memory Efficient Parallel Line Solver,”
Los Alamos National Laboratory report
LA-UR-04-4149 (2004) [submitted to SISC,
2004].

For more information, contact
Markus Berndt (berndt@lanl.gov).

Acknowledgements
We would like to acknowledge NNSA’s Advanced
Simulation and Computing (ASC), Advanced
Applications Program, for financial support.

Figure 1—
Timings for 20 V(1,1)
BoxMG cycles with red-
black line relaxation on
square processor grids
ranging from 2 × 2
to 22 × 22.

